Inhibition of human TREK-1 channels by caffeine and theophylline.

نویسندگان

  • S Harinath
  • S K Sikdar
چکیده

Caffeine (1,3,7-trimethylxanthine) and theophylline (1,3-dimethylxanthine) are used for therapeutic purposes and can cause life-threatening convulsive seizures due to systemic toxicity. The mechanisms for the epileptogenicity of caffeine and theophylline are not clear. TWIK-related K(+) channels (TREK-1) are highly expressed in the human central nervous system and have a major role in the control of neuronal excitability by regulating the resting membrane potential. In view of their physiological significance, inhibition of TREK-1 channels may be implicated in caffeine- and theophylline-induced seizures. We thus investigated, using whole-cell patch-clamp technique, modulation of hTREK-1 channels expressed in Chinese hamster ovary (CHO) cells by caffeine and theophylline. Caffeine and theophylline produced reversible inhibition of TREK-1 channels in a concentration-dependent manner. The half-maximal inhibitory concentrations (IC(50)) for caffeine and theophylline were 377+/-54microM and 486+/-76microM, respectively. Caffeine and theophylline depolarized the membrane potential of CHO(TREK-1) cells in a reversible and concentration-dependent manner. Inhibition by caffeine (5mM) and theophylline (2mM) was attenuated in TREK-1 channels with mutation of the PKA consensus sequence at serine 348, suggesting the involvement of cAMP/PKA pathway in the inhibitory process. Inhibition of TREK-1 channels and consequent membrane depolarization may contribute to the convulsive seizures induced by toxic levels of caffeine and theophylline.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Kinetic Comparison on the Inhibition of Adenosine Deaminase by Purine Drugs

The effects of allopurinol, acyclovir and theophylline on the activity of adenosine deaminase (ADA) were studied in 50 mM sodium phosphate buffer pH 7.5 at 27°C, using a UV– Vis spectrophotometer. Adenosine deaminase is inhibited by these ligands, via different types of inhibition. Allopurinol, as a transition state analog of xanthine oxidase, and acyclovir competitively inhibit the catalytic a...

متن کامل

A Kinetic Comparison on the Inhibition of Adenosine Deaminase by Purine Drugs

The effects of allopurinol, acyclovir and theophylline on the activity of adenosine deaminase (ADA) were studied in 50 mM sodium phosphate buffer pH 7.5 at 27°C, using a UV– Vis spectrophotometer. Adenosine deaminase is inhibited by these ligands, via different types of inhibition. Allopurinol, as a transition state analog of xanthine oxidase, and acyclovir competitively inhibit the catalytic a...

متن کامل

Effects of phenothiazine neuroleptics on the rate of caffeine demethylation and hydroxylation in the rat liver.

The primary metabolic pathways of caffeine are 3-N-demethylation to paraxanthine (CYP1A2), 1-N-demethylation to theobromine and 7-N-demethylation to theophylline (CYP1A2 and other enzymes), and 8-hydroxylation to 1,3,7-trimethyluric acid (CYP3A). The aim of the present study was to investigate the influence of phenothiazine neuroleptics (chlorpromazine, levomepromazine, thioridazine, perazine) ...

متن کامل

استفاده از سلول های در حال استراحت سویه ی بومی غربال گری شده Rhodotorula sp. CW03 در بیوترانسفورماسیون کافئین به تئوفیلین و پاراگزانتین

Introduction & Objective: In recent years, microorganisms have been applied as biocatalysts for making pharmaceutically natural products. Microbial biotransformation of caffeine suggests a dual approach for biodegradation of toxic caffeine from polluted environments and a method for the production of medically and pharmaceutically valuable dimethylxanthines. The present work describes the ident...

متن کامل

Requirement of intact adenosine A1 receptors for the diuretic and natriuretic action of the methylxanthines theophylline and caffeine.

Although the diuretic and natriuretic effects of the methylxanthines caffeine and theophylline are well established, the mechanisms responsible for these effects are unclear and may be related to inhibition of phosphodiesterases and/or antagonism of adenosine receptors. With regard to the latter, pharmacological blockade of A1 receptors can induce diuresis and natriuresis by inhibition of proxi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Epilepsy research

دوره 64 3  شماره 

صفحات  -

تاریخ انتشار 2005